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Abstract. Following Zograf and Takhtajan, we use Schottky uniformization of g> 1 
Riemann surfaces to obtain the Liauville equation and its general solution on the covering 
space of a Riemann surface. Formal apparatus of invene scattering theory is employed to 
compute the exchange algebra of the c h i d  solutions to a second-order linear differential 
equation. The results depend on 3s-3 complex parameters. 

1. Introduction 

Ever since Polyakov’s seminal work [l] on 2~ quantum gravity, the study of both 
classical and quantum Liouville theory [Z] has attracted much attention. The interests 
are really twofold. On the one hand, even though the matrix models [3] proved very 
successful, several aspects, including the problematic strong coupling region, of the 
continuous model still seem mysterious. On the other hand, Liouville theory, as the 
simplest case of Toda theories, is conformal invariant which, among other CFTS, is 
intimately related to quantum group [4] through its quantum exchange algebra, as 
shown by Gervais in [ 5 ] .  

In the previous studies, either in conformal field theory or in quantum gravity, 
most of the work considered only topologically trivial ZD manifolds (there are of course 
several exceptions, see [SI). It is evident that Liouville theory on general Riemann 
surfaces is of crucial importance. In this respect, Zograf and Takhtajan [7] have proved 
a quite intriguing result concerning a relation between the accessory parameters in the 
uniformatization theory and the action of the Liouville equation on an arbitrary 
Riemann surface of genus g > 1. The Liouville action proposed by Zograf and Takhtajan 
has the property that it coincides with the usual one when restricted to the fundamental 
domain of the Schottky group, while the extra terms bring up dependence on the 3g-3 
Schottky space parameters. Note that the Liouville equation on the covering space of 
a Riemann surface is obtained as the Euler-Lagrange equation of the proposed action. 
In addition, according to an old corollary of the uniformization theorem, every 
hyperbolic metric of constant negative curvature on a Riemann surface, as an induced 
Poincare metric, satisfies the Liouville equation on the covering space. The Liouville 
field determined by this metric obeys a delicate transformation law under the Schottky 
group. 

In this paper starting from the prescribed Liouville theory on the covering space 
of a Riemann surface, we carry out a study of the classical inverse problem for the 
Liouville equation on an arbitrary Riemann surface, paying attention to the similarity 
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between the general solution of the Liouville equation on a Riemann surface and that 
on a plane. In the next section, we briefly recall some necessary mathematical facts 
concerning the Schottky group and uniformization. The way the Liouville equation 
and its general solution on a Riemann surface come into play is also explained. In 
section 3, we introduce the change of variables, diagonalize the monodromy matrices 
by a new set of dynamical variables and compute the basic Poisson brackets. As a 
by-product, we obtain a standard free oscillator expression for Liouville fields. In  
section 4, we bring together our results of calculating exchange algebra between the 
classical analogues of chiral vertex operators. Finally, in section 5, we summarize this 
paper with several comments. 

2. Mathematical preliminaries 

A marked Riemann surface of genus g >  I, is a Riemann surface M with xOe M taken 
as fixed, together with a choice of a set of generators ai, pi, i = 1,. . . , g of the 
funadmental group ,rl(M,x,,). Given this, a dissection of M can be performed by 
cutting off M along 2g homology cycles, starting from the point xo. The result is a 
planar polygon in a subregion of (extended) complex plane. The reverse procedure 
of dissection, which identifies edges of the polygon by the prescribed generators ai, 
pi, is what the famous uniformization theorem amounts to. The mathematically rigorous 
way of uniformizing a surface is to take a covering space 0, and a set of covering 
maps. Let G be the automorphism group of the covering transformations, then O / G  
is a Riemann surface (of genus g> 1). In this paper we always choose as G the Schottky 
group 1, which is a (discontinuous) group consisting of strictly loxodron$c transforma- 
tions. The corresponding covering space is the extended complex plane C = CP' U (m), 
i.e. Z maps C into C, via fractional linear transformation y :  

a w + b  
cw+d 

r ( w )  =- W E 6  ad -cb  = I .  

Every strictly loxodromic transformation has only two distinct fixed points [8], 
y ( & 2 )  = &, 6, f c2, so every generator L of the Schottky group can be uniquely (up' 
to an overall SL(2, C )  transformation) determined by its fixed points and a constant 
multiplier: 

The condition for IAl is such that 5, and c2 are repulsive and attractive, respectively. 
It is easily seen that 

Let us choose a set of free generators Le, i = I , .  . . , g, of E (such a 1 is named the 
marked Schottky group). The corresponding marked Riemann surface can be obtained 
as folFws. X maps e into e. Exlcuding a finite set of limiting points of E, a subset 
O in C is called the region of discontinuity of the (properly discontinuous) group 2, 
1 acts on z1 freely, and according to the uniformization theorem, O/E is the desired 
Riemann surface (g>  1). 2 maps the interior of the isometric circle Icz+dl= 1, to the  
exterior of the isometric circle /cz - a /  = I .  So, the fundamental domain of 1 in C is 



Classical exchange algebra 125 

a region D = u$- ,D; U D;,  bounded by 2g disjoint Jordan curves Ai, A;, i = 1, .  . . , g 
(see figure 1). An important fact is A;=-L , (A , ) ,  with action of Li reversing the 
orientation of Ai. 

Equation (2.3) implies that the Schottky group can be parametrized by 3g  - 3 (minus 
three because of the conjugation by SL(2, C ) )  complex parameters. More than this, 
there is a natural isomorphism from the marked Schottky group [X, Lj) to a subset in 
~ 3 8 - 3 :  

{X, L;] c) ((it), &I, A j )  E S, c C3*-’ (2.4) 

here S, is the Schottky space [9] connected to Teichmuller space in a suitable way. 
In the following sections, the so-called Fuchsian equation and its independent 

solutions on the covering space of Riemann surfaces will be referred to. So we shall 
summarize a few facts about them here. 

The Fuchsian equation is a second-order linear differential equation satisfied by a 
meromorphic differential on M of order -f [lo]: 

y”+fSJ[u]y=O (2.5) 
where Y [ u ]  is the Schwartz differential defined as 

with the property that SJ[ y ]  = 0, for y a fractional linear transformation. 
Two linearly independent solutions y ,  , y ,  to equation (2 .5 )  exist and their ratio 

yI/y2 solves the Schwarz equation (2.6). In each analytic coordinate patch, the system 
of equations (2.5) and (2.6) is trivially satisfied by  analytic functions. However, it 
becomes non-trivial globally, due essentially to the transformation law of Y [ u ]  under 
the coordinate change z+  w: 

. Y [ U ( W ) l  =SJ[u(r ) l (w’)*+SJ[w(z) l .  (2.7) 
Since equation (2.5) is covariant (with u(w)  transforms as differential of -4 order) 
under coordinate transformation, it makes sense to speak of solutions of equation (2.5) 
defined globally on a Riemann surface M. These are topologically inequivalent solutions 
indexed by 2g homology bases of M. It was proved in [IO] that such solutions depend 
on 3g - 3 complex parameters (we ignore here the dependence of the Schwartz connec- 
tion on accessory parameters which, however, is needed to fix up the arbitrariness of 
Schwartz connections on M.) We will see below that these 2g topologically inequivalent 

Figure 1. The fundamental domain o f  the Schottky group. Circles are identified by L, to 
obtain a g-handled surface. 
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solutions ot the Fuchsian equation are crucial for linearizing the boundary conditions 
obeyed by the Liouville field variables. 

Let us return to Schottky uniformization. Remember that every Riemann surface 
of g> 1 is equipped with a (hyperbolic) metric of constant negative curvature. Let it 
be of the form ds2 = h dw dW; its Gauss curvature is 

Yi-Xin Chen and Hong-Bo Goo 

1 
h 

K = -- JvJv In h. (2.8) 

Choosing h =e', the requirement of constant negative curvature then leads to the 
Liouville equation: 

&d& =erp (2.9) 
(here we have normalized K to be -1). The advantage of Schottky uniformization is 
that it gives rise to a smooth solution of equation (2.9) [ l l ] ,  q(w) on Cl, such that 

with transformation law under the Schottky group: 
e d L v )  = e""' I L'( W)r2 LEX. 

(2.10) 

(2.11) 

The f in equation (2.10) is a conformal mapping from Cl to the upper half-plane H 
(f is a multivalued function), and its Schwartz differential coincides with the energy- 
momentum tensor constructed from q(w): 

9 [ f 1 = ~ , , - ~ q ~ -  1 2 -  TLiou. (2.12) 

Based on the above observations, Zograf and Takhtajan proposed the following 
action of the Liouville system on the covering space fl of a Riemann surface: 

S(q)=- 
2 0  'I 2 i = 2  

(2.13) 

I - &  1. = 

It is evident that variation of S ( q )  gives rise to the Liouville equation (2.9). The reason 
for the last three terms in the action (2.13) is to make the action independent of the 
choice of fundamental domain D in fl. Thus it is well defined and universal on Cl. 
Note that in this way the Liouville field cp( w) acquires additional dependence on 3g -3 
parameters in S,. 

' fi(sl-n)' 

3. The classical inverse problem method for the Liouville equation 

In the preceding section, we have seen that the Liouville equation can be consistently 
put on the covering space of the Riemann surface, with Liouville fields transforming 
definitely under the Schottky group. We also learnt that topologically inequivalent 
solutions to the Fuchsian equation can be parametrized by 3g -3  complex parameters. 
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Now we are ready to carry out a study of the classical periodic problem for the Liouville 
system on a Riemann surface. One of the important concepts in the inverse problem 
method is the definition of equal time Poisson brackets. The ‘time’ in complex coordin- 
ate w can be taken as f =Inlwl by relation: In w = f+ix, In w = f-ix. In the (5 1 )  
coordinate system, the Liouville equation takes the form 

(3.1) 

here the coupling constant 0 of ‘p (x, 1 )  is explicitly introduced. Being exactly the 
same form (except for a minus sign before the last term in the left-hand side, which 
is responsible for the negative curvature we are choosing) as in flat space-time, equation 
(3.1) admits the same zero curvature expression. We refer the reader to [12] for the 
notation. 

From the zero curvature expression of equation (3.1), we read off the classical 
r-matrix in our case 

2 
P 

‘p,, - ‘pxx -- eeq = 0 

/ o  0 0 o \  

An important notion in the inverse scattering theory is the transition matrix T(x ,  xo), 
which is defined as 

T ( x ,  xo) = P exp( 1: V(x’ ,  t )  dx’) (3.3) 

here P denotes path ordering, and U(x’,  1 )  is a field-dependent matrix which appeared 
in the linearized auxiliary equation (see [12]). 

By ultralocality of the T-matrix, it is easily checked that T(X,X, )  satisfies the 
fundamental Poisson bracket: 

{T(x,xo)ST(x,xo))=[r, ~ ( x ,  x o ) ~ ~ ( x , x 0 ) l  (3.4a) 

here we adhere to the convention for the tensor product 

(AOB)ij,mn =AimBjn 
and 

{ A S B ) ~ , ~ ~ = { A ~ ~ ,  B,.}. 
For our purposes of calculation, it is convenient to use the alternative form of 

(3.46) 

equation (3.4~):  

{ ~ ( x )  S T(Y 1) = ( UX, Y )  o 1 ) [ r .  ~ ( y )  o T(Y)I X’Y 

with a similar equation for x < y .  
Equation (3.46) is a manifestation of the following property of T ( x , y ) :  

r(x) = T(X, Y ) T ( Y ) .  (3.5) 
In terms of matrix elements of T ( x ) ;  we introduce a pair of functions u ( x ) ;  u ( x )  which 
serve as substitutes for canonical pair of Liouville field variables ‘p, T, 
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Using equations (3.6) and (3.46), we compute the Poisson bracket of U, U as follows: 

Yi-Xin Chen and Hong-Bo Gao 

(u(x). u ( Y ) )  = 0' sgn(x-y)[u(x)- ~ ( Y ) ] ~ - ~ [ ~ ~ ( X ) -  u'(Y)] 

{u(x), u ( Y ) }  = -6 sgn(x-y)[u(x) - ~ ( Y ) ~ ~ - ~ . [ ~ ~ ( X ) - - ~ ( Y ) ~  

{ u ( x ) ,  U ( Y ) }  = -20'[u2(x)-~(x)u(Y)I. 

(3.7) 

Now we are in the position to apply the standard methods of inverse scattering to 
+ha --,.l.la- I+ Ln-A i e mlr..l-+:r\n nf thn Dnirenn h r o r L d  mlntinnr fnrth- , -~nn-:nol l~r  
,,IS y,"",c,,, ',I I,',,,") L . C .  I P L I U I Y L L Y I .  "1 *..U '",."...U-.', L. . l  I "..,I".. "LYI..UL L C l Y L l Y l l Y  I". 

transformed variables (see below). 
Due to the smoothness of the Liouville fields 'p and T on n, they are periodic 

along each non-trivial cycle on M. From this one readily deduces the following 
periodicity of the transition matrix T ( x ) :  

T(X) U T ( X ) T ~ ' ( O ' ~ ; )  (3.8) 

x taken around cycles A or A, i = 1 . . . g. 
The matrices TA,,  TA;  are monodromy matrices along Ai and A:, respectively. 
Denote the matrix elements of T A ( ,  TA;  by 

it is easily checked from equations (3.8) and equation (3.6) that 

u(x+ around A,)  = T?(u(x ) )  U ( X +  around A,)  = T $ ( u ( x ) )  
(3.10) 

u(x+ around A:) = T;;(u(x))  u ( x +  around A:) = T t ; ( u ( x ) ) .  

In the above expression, T$ and T,"; act on U, v by fractional linear transformation, 
and are defined by 

(3.11) 

The change of variables 'p, ?T H U, U is not the whole story, since U, U obey 
complicated 'boundary conditions' (equation (3.10)). We need to linearize the system 
furiher by diagonaiizing ihe monodroiiiy iiiairices TA: ( ik  G i k r  sei of iiioiiodiomj 
matrices TA; will be shown later to be related to TA( by simple relations.) The 
diagonalization of TA( can be carried out using the 2g fixed points zli, zzi, of matrices 
T? (remember T$ is hyperbolic, as usual): 

T $ ( z i , ~ )  = z1,zi i = l  . . . g  (3.12) 

with 

(3.13) sf - a; *J (a j  + sj)2-4 
Z1.2i = 

2Yi 

Diagonalization of TA' is accomplished by the change of variables, 

(3.14) 
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Now the new set of variables obey the standard quasiperiodic boundary conditions: 

(3.15) 
u ( x +  around Ai )  = ui(x) 
u ( x +  around A i )  = e-", u , ( x )  

here 

,Pi = Sf - Zl iYi  e-Pi=s.-z I 2iYj (3.16) 
r.....+L-- 
L U L L I I C I ,  

e2pm +e-'P( = (ai + aj)'-2. (3.17) 

Comparing with equation (2.3), we see a one-to-one correspondence between 
(zli, zZi.pi) and ( f i ,  f i ,  A,)  is natural. This implies that we obtain a set of parameters 
isomorphic to the Schottky space mentioned in section 2. 

What about the 'boundary conditions' for u ( x )  along the Ai cycles? To find the 
answer, note that Ai = - L , ( A ( ) .  Let us use the transformation law of p ( w )  (equation 
(2.11)) (and a similar one for a ( w )  of course) to compute T ( L , ( x ) ) .  It follows that 

T ( L i ( x ) ,  LJx,))  = P exp[ 1: U(x' ,  t) dx'+[I KJx' ,  t )  dx'] 
.~ . 
(3.18) 

where the prime denotes differentiation w.r.t complex variable w, and 

u3=(1  0 -1  o j  

We need to find out the explicit relation between T ( L i ( x ) )  and T ( x ) .  Note the field 
independence of Ki(x ,  t ) ;  we are able to use the gauge covariance of the Lax pair 
equation, taking account of the singularity of K j ( x ,  1 ) .  So let 

T ( L i ( x ) ,  L i ( ~ ~ ) ) = G i ( x , x g ) ~ ( ~ , ~ g )  (3.19) 

such that G,(x ,  x , )  satisfies 

G;'(x,  x,)J,G,(x, xo) = Gr'(x, x o ) K j ( x ,  t )G , (x ,  xo).  (3.20) 

Applying equations (3.18)-(3.20), we have 

J,?(x, X O )  = G ~ ' ( x ,  X O ) ~ ( X ,  f)G,(x, XO). (3.21) 

In terms of the formal solution to equation (3.21), we can express T ( L , ( x ) ,  L i (xn) )  as 
follows: 

T(Li(X)? L&J) 

1 G;'(x' ,x , , )U(x' ,  t )G; (x ' ,x , )dx '  

Note that G , ( x , ,  xo) is no longer an identity matrix since K J x ,  f )  is singular. Rather, 
it contributes to the general solution to equation (3.20): 

1 G,(x, xo) = P exp[ K;(x ' ,  f )  dx'+ Kj(x', f )  dx' I A'? 

(3.23) 
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Here Af means taking around the cycle Ai for m times, m E Z (counting different 
directions). In obtaining equation (3.23), we have taken account of the residue of K,. 

Yi-Xin Chen and Hong-Bo Gao 

It follows from the above calculation that 

(3.24) 

Therefore, we have also linearized the boundary condition of u(x) along A; cycles. 
In the mean time we linearize the At cycle boundary conditions, i.e. 

(3.25) 

As usual in the linearized problem of the integrable systems, the parameters, such 
as q2; and pi used to diagonalize the monodromy matrices, are all dyanmical variables; 
they should have non-trivial Poisson brackets; so3 in evaluating the Poisson brackets 
between linearized field variables U?. U,, one should take account of their contribution. 
Happily, as we have checked in detail, the Poisson brackets among the parameters 
z1.2i and p i  all vanish, even though their Poisson brackets with U, U definitely do not. 
After a tedious but direct computation, we obtain (for i = j): 

{ui(x), u , ( Y ) } =  6 sgn(x-y)[uLx)- uib)12+G coth(pJ[u?(x) -uf(y)I 

x [(uj(x) - I)( u;(y) -e-2D,) +(u,(y) - I ) (  uj(x) -e-'",)] 

-2& 
{Ui(X), u ; ( Y ) l = I - e - 2 P i  u,(x)(u;(Y) - l)(oj(y)+e-2P,). 

By introducing 

(3.26) 

P, j (x)=  u:(x)/u;(x) P2,(x)= u:(x)/u:(x) (3.27) 

one easily sees that PlZj(x) satisfy the free field Poisson brackets: 

{PldX)? p,i(Y)l=4~'s '(x-Y) (plr(x), P2; (Y) }=O 

tP2i(X), P2hJ) }=  - 4 w - Y )  {Pt, pl,li(x)}=o 
(3.28) 

and obey the periodic boundary conditions along cycles Ai, Ai. We note that P,,2i 
have the following property: 

" , 

P2Jx) dx = -2p; + 8m7r. 
(3.29) 

Obviously pi serves as the zero mode in the Fourier expansions of 
at the essence of the free field formulation of the Liouville system. 

Thus we arrive 

4. Classical exchange algebra 

In this section we shall compute the exchange algebra by using equation (3.26) for 
general i, j .  Recall that in section 2 we explained that on a Riemann surface of genus 
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g > 1, the Fuchsian equation (2.5) admits 2g topologically inequivalent solutions. 
Denote by these 2g solutions which are expressible by the linearized variables 
ui(x) and their derivatives u;(x), as follows: 

+,:(x) =[u:(x)]-'/2 q12<(X) = ui(x)[ul(x)l-'/2 i = l .  . .  g. (4.1) 
We are interested in the Poisson brackets between uj(x), u , ( y )  at i # j (the case i = j 
was treated in section 3, equation (3.26)). A tedious but direct calculation shows 

{Ui(X), U i b ) )  

= G[z:?zj/]-'{sign(x -y)[Ay](x, y )  -A;/'(y, x)]'+ Ay1(& y)-Aj;I(y, x))  
(4.2) 



5. Concluding remarks 

To end this paper, a few comments are in order. 
As we have just seen, Liouville theory on a high-genus Riemann surface shares 

most of the integrability characteristics in its flat space version. As equations (3.27) 
and (3.28) suggest, there exists a set of g pairs of free field oscillator variables all 
satisfying simple PB relations. This appears in accordance with the fact that on  a 

Usually, in the flat space version of exchange algebra, one considers exchange of 
the two chiral vertices corresponding to the two linearly independent solutions to the 
Fuchsian equation. As we have argued in section 2, on g > 1 Riemann surfaces, however, 
the Fuchsian equation has 2g topologically inequivalent solutions Corresponding to 
2g non-trivial monodromies around homoglogy cycles. In view of possible implication 
to representation of a braid group on a Riemann surface, it is reasonable to take these 
topologically inequivalent solutions as independent, thus justifying the appearance of 
the 4g2x4g2 exchange matrix in equation (4.4). 

The interesting depence of our results on the 3g-3 complex parameters in Schottky 
space has the following interpretation. Because Schottky space is (locally) isomorphic 
to Teichmuller space, which is the space of metric (complex) structures, the dependence 
on these 'moduli' parameters implies that different complex structures in ZD manifolds 
should give rise to different exchange algebra structures. This is also natural, since 
different complex structures are related by quasiconformal transformation. One should 
not expect 'moduli' independent physical results from an intrinsically conformal 
invariant theory. 

Din-0-r r...f-na -f n ~ r . . r  n thnrn 0 . r ~  n "a-,. -nrlnr fn- the LnIn-n-hio / 1  n\ f-.ms 
I . l b l l l P L L I I  O Y I I m L l r  U1 S C L 1 " "  6, L l l r l r  P,L 6 Ab," l l l U Y C I  I", L l l b  .1U1Y,u"p1..u ,l, Y, L U L L I I " .  
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